Publications

2018

[1]

D. M. Debroy, M. Li, M. Newman, and K. R. Brown, “Stabilizer Slicing: Coherent Error Cancellations in Low-Density Parity-Check Stabilizer Codes,” PHYSICAL REVIEW LETTERS, vol. 121, no. 25, Dec. 2018, doi: 10.1103/PhysRevLett.121.250502.

2019

[2]

X.-C. Wu et al., “Full-State Quantum Circuit Simulation by Using Data Compression,” in PROCEEDINGS OF SC19: THE INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, 2019. doi: 10.1145/3295500.3356155.

[3]

Y. Shi et al., “Optimized Compilation of Aggregated Instructions for Realistic Quantum Computers,” in TWENTY-FOURTH INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS (ASPLOS XXIV), 2019, pp. 1031–1044. doi: 10.1145/3297858.3304018.

[4]

P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, and M. Martonosi, “Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers,” in TWENTY-FOURTH INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS (ASPLOS XXIV), 2019, pp. 1015–1029. doi: 10.1145/3297858.3304075.

[5]

P. Gokhale et al., “Partial Compilation of Variational Algorithms for Noisy Intermediate-Scale Quantum Machines,” in MICRO’52: THE 52ND ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE, 2019, pp. 266–278. doi: 10.1145/3352460.3358313.

[6]

M. Coudron and A. W. Harrow, “Universality of EPR Pairs in Entanglement-Assisted Communication Complexity, and the Communication Cost of State Conversion,” in 34TH COMPUTATIONAL COMPLEXITY CONFERENCE (CCC 2019), A. Shpilka, Ed., in Leibniz International Proceedings in Informatics, vol. 137. 2019. doi: 10.4230/LIPIcs.CCC.2019.20.

[7]

P. Murali, A. Javadi-Abhari, F. T. Chong, and M. Martonosi, “Formal constraint-based compilation for noisy intermediate-scale quantum systems,” MICROPROCESSORS AND MICROSYSTEMS, vol. 66, pp. 102–112, Apr. 2019, doi: 10.1016/j.micpro.2019.02.005.

[8]

K. A. Landsman et al., “Two-qubit entangling gates within arbitrarily long chains of trapped ions,” PHYSICAL REVIEW A, vol. 100, no. 2, Aug. 2019, doi: 10.1103/PhysRevA.100.022332.

[9]

Y. Shi, C. Chamberland, and A. Cross, “Fault-tolerant preparation of approximate GKP states,” NEW JOURNAL OF PHYSICS, vol. 21, Sep. 2019, doi: 10.1088/1367-2630/ab3a62.

[10]

D. Zhu et al., “Training of quantum circuits on a hybrid quantum computer,” SCIENCE ADVANCES, vol. 5, no. 10, Oct. 2019, doi: 10.1126/sciadv.aaw9918.

[11]

W. M. Kirby and P. J. Love, “Contextuality Test of the Nonclassicality of Variational Quantum Eigensolvers,” PHYSICAL REVIEW LETTERS, vol. 123, no. 20, Nov. 2019, doi: 10.1103/PhysRevLett.123.200501.

[12]

A. Tranter, P. J. Love, F. Mintert, N. Wiebe, and P. v Coveney, “Ordering of Trotterization: Impact on Errors in Quantum Simulation of Electronic Structure,” ENTROPY, vol. 21, no. 12, Dec. 2019, doi: 10.3390/e21121218.

2020

[13]

P. Murali, D. M. Debroy, K. R. Brown, and M. Martonosi, “Architecting Noisy Intermediate-Scale Trapped Ion Quantum Computers,” in 2020 ACM/IEEE 47TH ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA 2020), in ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE. 2020, pp. 529–542. doi: 10.1109/ISCA45697.2020.00051.

[14]

A. Holmes, M. R. Jokar, G. Pasandi, Y. Ding, M. Pedram, and F. T. Chong, “NISQ plus : Boosting quantum computing power by approximating quantum error correction,” in 2020 ACM/IEEE 47TH ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA 2020), in ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE. 2020, pp. 556–569. doi: 10.1109/ISCA45697.2020.00053.

[15]

A. W. Harrow, S. Mehraban, and M. Soleimanifar, “Classical Algorithms, Correlation Decay, and Complex Zeros of Partition Functions of Quantum Many-Body Systems,” in PROCEEDINGS OF THE 52ND ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC `20), K. Makarychev, Y. Makarychev, M. Tulsiani, G. Kamath, and J. Chuzhoy, Eds., in Annual ACM Symposium on Theory of Computing. 2020, pp. 378–386. doi: 10.1145/3357713.3384322.

[16]

A. W. Harrow and A. Y. Wei, “Adaptive Quantum Simulated Annealing for Bayesian Inference and Estimating Partition Functions,” in PROCEEDINGS OF THE 2020 ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, S. Chawla, Ed., in Discrete Algorithms. 2020, pp. 193–212.

[17]

A. W. Harro and A. Y. Wei, “Adaptive Quantum Simulated Annealing for Bayesian Inference and Estimating Partition Functions,” in PROCEEDINGS OF THE THIRTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA’20), 2020, pp. 193–212.

[18]

P. Gokhale et al., “Optimization of Simultaneous Measurement for Variational Quantum Eigensolver Applications,” in IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE20), H. A. Muller, G. Byrd, C. Culhane, E. DeBenedictis, and T. Humble, Eds., 2020, pp. 379–390. doi: 10.1109/QCE49297.2020.00054.

[19]

P. Gokhale, A. Javadi-Abhari, N. Earnest, Y. Shi, and F. T. Chong, “Optimized Quantum Compilation for Near-Term Algorithms with OpenPulse,” in 2020 53RD ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE (MICRO 2020), 2020, pp. 186–200. doi: 10.1109/MICRO50266.2020.00027.

[20]

C. Duckering, J. M. Baker, D. Schuster I, and F. T. Chong, “Virtualized Logical Qubits: A 2.5D Architecture for Error-Corrected Quantum Computing,” in 2020 53RD ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE (MICRO 2020), 2020, pp. 173–185. doi: 10.1109/MICRO50266.2020.00026.

[21]

Y. Ding et al., “SQUARE: Strategic Quantum Ancilla Reuse for Modular Quantum Programs via Cost-Effective Uncomputation,” in 2020 ACM/IEEE 47TH ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA 2020), in ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE. 2020, pp. 570–583. doi: 10.1109/ISCA45697.2020.00054.

[22]

Y. Ding, P. Gokhale, S. F. Lin, R. Rines, T. Propson, and F. T. Chong, “Systematic Crosstalk Mitigation for Superconducting Qubits via Frequency-Aware Compilation,” in 2020 53RD ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE (MICRO 2020), 2020, pp. 201–214. doi: 10.1109/MICRO50266.2020.00028.

[23]

J. M. Baker, C. Duckering, and F. T. Chong, “Efficient Quantum Circuit Decompositions via Intermediate Qudits,” in 2020 IEEE 50TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL 2020), in International Symposium on Multiple-Valued Logic. 2020, pp. 182–187. doi: 10.1109/ISMVL49045.2020.00012.

[24]

J. M. Baker, C. Duckering, A. Hoover, and F. T. Chong, “Time-Sliced Quantum Circuit Partitioning for Modular Architectures,” in 17TH ACM INTERNATIONAL CONFERENCE ON COMPUTING FRONTIERS 2020 (CF 2020), 2020, pp. 98–107. doi: 10.1145/3387902.3392617.

[25]

A. Irshad, D. Mitra, A. S. Rajan, P. Trinh, M. Balasubramanian, and S. R. Narayanan, “A Low-Cost Iron-Based Current Collector for Alkaline Battery Electrodes,” JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 167, no. 2, Jan. 2020, doi: 10.1149/1945-7111/ab6dd5.

[26]

P. Gokhale, J. M. Baker, C. Duckering, F. T. Chong, K. R. Brown, and N. C. Brown, “Extending the Frontier of Quantum Computers With Qutrits,” IEEE MICRO, vol. 40, no. 3, pp. 64–72, May 2020, doi: 10.1109/MM.2020.2985976.

[27]

A. Y. Wei, P. Naik, A. W. Harrow, and J. Thaler, “Quantum algorithms for jet clustering,” PHYSICAL REVIEW D, vol. 101, no. 9, May 2020, doi: 10.1103/PhysRevD.101.094015.

[28]

A. Zhao, A. Tranter, W. M. Kirby, A. Ung Shu Fay and Miyake, and P. J. Love, “Measurement reduction in variational quantum algorithms,” PHYSICAL REVIEW A, vol. 101, no. 6, Jun. 2020, doi: 10.1103/PhysRevA.101.062322.

[29]

A. Litteken, Y.-C. Fan, D. Singh, M. Martonosi, and F. T. Chong, “An updated LLVM-based quantum research compiler with further OpenQASM support,” QUANTUM SCIENCE AND TECHNOLOGY, vol. 5, no. 3, Jul. 2020, doi: 10.1088/2058-9565/ab8c2c.

[30]

D. M. Debroy, M. Li, S. Huang, and K. R. Brown, “Logical performance of 9 qubit compass codes in ion traps with crosstalk errors,” QUANTUM SCIENCE AND TECHNOLOGY, vol. 5, no. 3, Jul. 2020, doi: 10.1088/2058-9565/ab7e80.

[31]

M. Newman, L. A. de Castro, and K. R. Brown, “Generating Fault-Tolerant Cluster States from Crystal Structures,” QUANTUM, vol. 4, Jul. 2020, doi: 10.22331/q-2020-07-13-295.

[32]

J. X. Lin, J. A. Formaggio, A. W. Harrow, and A. Natarajan V, “Quantum blackjack: Advantages offered by quantum strategies in communication-limited games,” PHYSICAL REVIEW A, vol. 102, no. 1, Jul. 2020, doi: 10.1103/PhysRevA.102.012425.

[33]

Y. Shi et al., “Resource-Efficient Quantum Computing by Breaking Abstractions,” PROCEEDINGS OF THE IEEE, vol. 108, no. 8, pp. 1353–1370, Aug. 2020, doi: 10.1109/JPROC.2020.2994765.

[34]

F. G. S. L. Brandao, A. W. Harrow, J. R. Lee, and Y. Peres, “Adversarial Hypothesis Testing and a Quantum Stein’s Lemma for Restricted Measurements,” IEEE TRANSACTIONS ON INFORMATION THEORY, vol. 66, no. 8, pp. 5037–5054, Aug. 2020, doi: 10.1109/TIT.2020.2979704.

[35]

Z. Eldredge et al., “Entanglement bounds on the performance of quantum computing architectures,” PHYSICAL REVIEW RESEARCH, vol. 2, no. 3, Aug. 2020, doi: 10.1103/PhysRevResearch.2.033316.

[36]

R. Eskandarpour, P. Gokhale, A. Khodaei, F. T. Chong, A. Passo, and S. Bahramirad, “Quantum Computing for Enhancing Grid Security,” IEEE TRANSACTIONS ON POWER SYSTEMS, vol. 35, no. 5, pp. 4135–4137, Sep. 2020, doi: 10.1109/TPWRS.2020.3004073.

[37]

H. B. Kaplan et al., “Many-Body Dephasing in a Trapped-Ion Quantum Simulator,” PHYSICAL REVIEW LETTERS, vol. 125, no. 12, Sep. 2020, doi: 10.1103/PhysRevLett.125.120605.

[38]

W. M. Kirby and P. J. Love, “Classical simulation of noncontextual Pauli Hamiltonians,” PHYSICAL REVIEW A, vol. 102, no. 3, Sep. 2020, doi: 10.1103/PhysRevA.102.032418.

[39]

Y. Wang et al., “High-Fidelity Two-Qubit Gates Using a Microelectromechanical-System-Based Beam Steering System for Individual Qubit Addressing,” PHYSICAL REVIEW LETTERS, vol. 125, no. 15, Oct. 2020, doi: 10.1103/PhysRevLett.125.150505.

[40]

T. Peng, A. W. Harrow, M. Ozols, and X. Wu, “Simulating Large Quantum Circuits on a Small Quantum Computer,” PHYSICAL REVIEW LETTERS, vol. 125, no. 15, Oct. 2020, doi: 10.1103/PhysRevLett.125.150504.

[41]

D. Zhu et al., “Generation of thermofield double states and critical ground states with a quantum computer,” PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 117, no. 41, pp. 25402–25406, Oct. 2020, doi: 10.1073/pnas.2006337117.

[42]

G. Pagano et al., “Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator,” PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 117, no. 41, pp. 25396–25401, Oct. 2020, doi: 10.1073/pnas.2006373117.

[43]

D. M. Debroy and K. R. Brown, “Extended flag gadgets for low-overhead circuit verification,” PHYSICAL REVIEW A, vol. 102, no. 5, Nov. 2020, doi: 10.1103/PhysRevA.102.052409.

[44]

J. M. Baker, C. Duckering, P. Gokhale, N. C. Brown, K. R. Brown, and F. T. Chong, “Improved Quantum Circuits via Intermediate Qutrits,” ACM TRANSACTIONS ON QUANTUM COMPUTING, vol. 1, no. 1, Dec. 2020, doi: 10.1145/3406309.

2021

[45]

C. Zhang and T. Li, “Escape saddle points by a simple gradient-descent based algorithm,” in ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, and J. W. Vaughan, Eds., in Advances in Neural Information Processing Systems, vol. 34. 2021.

[46]

X.-C. Wu, M. G. Davis, F. T. Chong, and C. Iancu, “Reoptimization of Quantum Circuits via Hierarchical Synthesis,” in 2021 INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC 2021), 2021, pp. 35–46. doi: 10.1109/ICRC53822.2021.00016.

[47]

X.-C. Wu et al., “TILT: Achieving Higher Fidelity on a Trapped-Ion Linear-Tape Quantum Computing Architecture,” in 2021 27TH IEEE INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE COMPUTER ARCHITECTURE (HPCA 2021), in International Symposium on High-Performance Computer Architecture-Proceedings. 2021, pp. 153–166. doi: 10.1109/HPCA51647.2021.00023.

[48]

E. Wilson, F. Mueller, L. Bassman, and C. Iancu, “Empirical Evaluation of Circuit Approximations on Noisy Quantum Devices,” in SC21: INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, in International Conference for High Performance Computing Networking Storage and Analysis. 2021. doi: 10.1145/3458817.3476189.

[49]

E. Wilson, F. Mueller, and S. Pakin, “Mapping Constraint Problems onto Quantum Gate and Annealing Devices,” in PROCEEDINGS OF SECOND INTERNATIONAL WORKSHOP ON QUANTUM COMPUTING SOFTWARE (QCS 2021), 2021, pp. 110–117. doi: 10.1109/QCS54837.2021.00016.

[50]

D. Wang, X. You, T. Li, and A. M. Childs, “Quantum Exploration Algorithms for Multi-Armed Bandits,” in THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, in AAAI Conference on Artificial Intelligence, vol. 35. 2021, pp. 10102–10110.

[51]

T. Tomesh et al., “Optimized Quantum Program Execution Ordering to Mitigate Errors in Simulations of Quantum Systems,” in 2021 INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC 2021), 2021, pp. 1–13. doi: 10.1109/ICRC53822.2021.00013.

[52]

R. Tao, Y. Shi, J. Yao, J. Hui, F. T. Chong, and R. Gu, “Gleipnir: Toward Practical Error Analysis for Quantum Programs,” in PROCEEDINGS OF THE 42ND ACM SIGPLAN INTERNATIONAL CONFERENCE ON PROGRAMMING LANGUAGE DESIGN AND IMPLEMENTATION (PLDI `21), S. N. Freund and E. Yahav, Eds., 2021, pp. 48–64. doi: 10.1145/3453483.3454029.

[53]

G. S. Ravi, K. N. Smith, P. Gokhale, and F. T. Chong, “Quantum Computing in the Cloud: Analyzing job and machine characteristics,” in 2021 IEEE INTERNATIONAL SYMPOSIUM ON WORKLOAD CHARACTERIZATION (IISWC 2021), in International Symposium on Workload Characterization Proceedings. 2021, pp. 39–50. doi: 10.1109/IISWC53511.2021.00015.

[54]

G. S. Ravi, K. N. Smith, P. Murali, and F. T. Chong, “Adaptive job and resource management for the growing quantum cloud,” in 2021 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2021) / QUANTUM WEEK 2021, H. A. Muller, G. Byrd, C. Culhane, and T. Humble, Eds., 2021, pp. 301–312. doi: 10.1109/QCE52317.2021.00047.

[55]

Z. Ma et al., “Adaptive Circuit Learning for Quantum Metrology,” in 2021 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2021) / QUANTUM WEEK 2021, H. A. Muller, G. Byrd, C. Culhane, and T. Humble, Eds., 2021, pp. 419–430. doi: 10.1109/QCE52317.2021.00063.

[56]

T. Li, C. Wang, S. Chakrabarti, and X. Wu, “Sublinear Classical and Quantum Algorithms for General Matrix Games,” in THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, in AAAI Conference on Artificial Intelligence, vol. 35. 2021, pp. 8465–8473.

[57]

S. Koretsky et al., “Adapting Quantum Approximation Optimization Algorithm (QAOA) for Unit Commitment,” in 2021 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2021) / QUANTUM WEEK 2021, H. A. Muller, G. Byrd, C. Culhane, and T. Humble, Eds., 2021, pp. 181–187. doi: 10.1109/QCE52317.2021.00035.

[58]

M. R. Jokar, R. Rines, and F. T. Chong, “Practical implications of SFQ-based two-qubit gates,” in 2021 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2021) / QUANTUM WEEK 2021, H. A. Muller, G. Byrd, C. Culhane, and T. Humble, Eds., 2021, pp. 402–412. doi: 10.1109/QCE52317.2021.00061.

[59]

Y. Huang, “Entanglement Dynamics from Random Product States at Long Times,” in 2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), in IEEE International Symposium on Information Theory. 2021, pp. 1332–1337. doi: 10.1109/ISIT45174.2021.9518187.

[60]

P. Gokhale et al., “Quantum Fan-out: Circuit Optimizations and Technology Modeling,” in 2021 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2021) / QUANTUM WEEK 2021, H. A. Muller, G. Byrd, C. Culhane, and T. Humble, Eds., 2021, pp. 276–290. doi: 10.1109/QCE52317.2021.00045.

[61]

J. Fustero, S. Palmtag, and F. Mueller, “Quantum Annealing Stencils with Applications to Fuel Loading of a Nuclear Reactor,” in 2021 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2021) / QUANTUM WEEK 2021, H. A. Muller, G. Byrd, C. Culhane, and T. Humble, Eds., 2021, pp. 265–275. doi: 10.1109/QCE52317.2021.00044.

[62]

C. Duckering, J. M. Baker, A. Litteken, and F. T. Chong, “Orchestrated Trios: Compiling for Efficient Communication in Quantum Programs with 3-Qubit Gates,” in ASPLOS XXVI: TWENTY-SIXTH INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS, 2021, pp. 375–385. doi: 10.1145/3445814.3446718.

[63]

J. M. Baker, A. Litteken, C. Duckering, H. Hoffmann, H. Bernien, and F. T. Chong, “Exploiting Long-Distance Interactions and Tolerating Atom Loss in Neutral Atom Quantum Architectures,” in 2021 ACM/IEEE 48TH ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA 2021), in Conference Proceedings Annual International Symposium on Computer Architecture. 2021, pp. 818–831. doi: 10.1109/ISCA52012.2021.00069.

[64]

A. B. Watts, N. Y. Halpern, and A. Harrow, “Nonlinear Bell inequality for macroscopic measurements,” PHYSICAL REVIEW A, vol. 103, no. 1, Jan. 2021, doi: 10.1103/PhysRevA.103.L010202.

[65]

J. X. Lin, E. R. Anschuetz, and A. W. Harrow, “Using Spectral Graph Theory to Map Qubits onto Connectivity-limited Devices,” ACM TRANSACTIONS ON QUANTUM COMPUTING, vol. 2, no. 1, Mar. 2021, doi: 10.1145/3436752.

[66]

A. K. Daniel and A. Miyake, “Quantum Computational Advantage with String Order Parameters of One-Dimensional Symmetry-Protected Topological Order,” PHYSICAL REVIEW LETTERS, vol. 126, no. 9, Mar. 2021, doi: 10.1103/PhysRevLett.126.090505.

[67]

D. Zhu et al., “Probing many-body localization on a noisy quantum computer,” PHYSICAL REVIEW A, vol. 103, no. 3, Mar. 2021, doi: 10.1103/PhysRevA.103.032606.

[68]

Y. Huang, “Universal entanglement of mid-spectrum eigenstates of chaotic local Hamiltonians,” NUCLEAR PHYSICS B, vol. 966, May 2021, doi: 10.1016/j.nuclphysb.2021.115373.

[69]

W. L. Tan et al., “Domain-wall confinement and dynamics in a quantum simulator,” NATURE PHYSICS, vol. 17, no. 6, p. 742+, Jun. 2021, doi: 10.1038/s41567-021-01194-3.

[70]

K. R. Brown, J. Chiaverini, J. M. Sage, and H. Haffner, “Materials challenges for trapped-ion quantum computers,” NATURE REVIEWS MATERIALS, vol. 6, no. 10, pp. 892–905, Oct. 2021, doi: 10.1038/s41578-021-00292-1.

[71]

A. W. Harrow and J. C. Napp, “Low-Depth Gradient Measurements Can Improve Convergence in Variational Hybrid Quantum-Classical Algorithms,” PHYSICAL REVIEW LETTERS, vol. 126, no. 14, Apr. 2021, doi: 10.1103/PhysRevLett.126.140502.

[72]

A. E. Russo, W. M. Kirby, K. M. Rudinger, A. D. Baczewski, and S. Kimmel, “Consistency testing for robust phase estimation,” PHYSICAL REVIEW A, vol. 103, no. 4, Apr. 2021, doi: 10.1103/PhysRevA.103.042609.

[73]

M. Kreshchuk, S. Jia, W. M. Kirby, G. Goldstein, J. P. Vary, and P. J. Love, “Light-Front Field Theory on Current Quantum Computers,” ENTROPY, vol. 23, no. 5, May 2021, doi: 10.3390/e23050597.

[74]

W. M. Kirby, A. Tranter, and P. J. Love, “Contextual Subspace Variational Quantum Eigensolver,” QUANTUM, vol. 5, May 2021, doi: 10.22331/q-2021-05-14-456.

[75]

A. Kyprianidis et al., “Observation of a prethermal discrete time crystal,” SCIENCE, vol. 372, no. 6547, p. 1192+, Jun. 2021, doi: 10.1126/science.abg8102.

[76]

A. W. Harrow, L. Kong, Z.-W. Liu, and P. W. Mehraban Saeed and Shor, “Separation of Out-Of-Time-Ordered Correlation and Entanglement,” PRX QUANTUM, vol. 2, no. 2, Jun. 2021, doi: 10.1103/PRXQuantum.2.020339.

[77]

T. Tomesh, P. Gokhale, E. R. Anschuetz, and F. T. Chong, “Coreset Clustering on Small Quantum Computers,” ELECTRONICS, vol. 10, no. 14, Jul. 2021, doi: 10.3390/electronics10141690.

[78]

C. Zhang, J. Leng, and T. Li, “Quantum Algorithms for Escaping from Saddle Points,” QUANTUM, vol. 5, Aug. 2021, doi: 10.22331/q-2021-08-20-529.

[79]

M. Kang et al., “Batch Optimization of Frequency-Modulated Pulses for Robust Two-Qubit Gates in Ion Chains,” PHYSICAL REVIEW APPLIED, vol. 16, no. 2, Aug. 2021, doi: 10.1103/PhysRevApplied.16.024039.

[80]

A. Ralli, P. J. Love, A. Tranter, and P. Coveney V, “Implementation of measurement reduction for the variational quantum eigensolver,” PHYSICAL REVIEW RESEARCH, vol. 3, no. 3, Aug. 2021, doi: 10.1103/PhysRevResearch.3.033195.

[81]

L. Riesebos, B. Bondurant, and K. R. Brown, “Universal Graph-Based Scheduling for Quantum Systems,” IEEE MICRO, vol. 41, no. 5, pp. 57–65, Sep. 2021, doi: 10.1109/MM.2021.3094968.

[82]

J. M. Baker and F. T. Chong, “Emerging Technologies for Quantum Computing,” IEEE MICRO, vol. 41, no. 5, pp. 41–47, Sep. 2021, doi: 10.1109/MM.2021.3099139.

[83]

Y. Liu, J. Sinanan-Singh, M. T. Kearney, G. Mintzer, and I. L. Chuang, “Constructing qudits from infinite-dimensional oscillators by coupling to qubits,” PHYSICAL REVIEW A, vol. 104, no. 3, Sep. 2021, doi: 10.1103/PhysRevA.104.032605.

[84]

A. Zhao, N. C. Rubin, and A. Miyake, “Fermionic Partial Tomography via Classical Shadows,” PHYSICAL REVIEW LETTERS, vol. 127, no. 11, Sep. 2021, doi: 10.1103/PhysRevLett.127.110504.

[85]

L. Egan et al., “Fault-tolerant control of an error-corrected qubit,” NATURE, vol. 598, no. 7880, p. 281+, Oct. 2021, doi: 10.1038/s41586-021-03928-y.

[86]

W. M. Kirby and P. J. Love, “Variational Quantum Eigensolvers for Sparse Hamiltonians,” PHYSICAL REVIEW LETTERS, vol. 127, no. 11, Sep. 2021, doi: 10.1103/PhysRevLett.127.110503.

[87]

W. M. Kirby, S. Hadi, M. Kreshchuk, and P. J. Love, “Quantum simulation of second-quantized Hamiltonians in compact encoding,” PHYSICAL REVIEW A, vol. 104, no. 4, Oct. 2021, doi: 10.1103/PhysRevA.104.042607.

[88]

J. Wurtz and D. Lykov, “Fixed-angle conjectures for the quantum approximate optimization algorithm on regular MaxCut graphs,” PHYSICAL REVIEW A, vol. 104, no. 5, Nov. 2021, doi: 10.1103/PhysRevA.104.052419.

[89]

Y. Huang, “Locally accurate matrix product approximation to thermal states,” SCIENCE BULLETIN, vol. 66, no. 24, pp. 2456–2457, Dec. 2021, doi: 10.1016/j.scib.2021.08.011.

[90]

D. M. Debroy et al., “Optimizing Stabilizer Parities for Improved Logical Qubit Memories,” PHYSICAL REVIEW LETTERS, vol. 127, no. 24, Dec. 2021, doi: 10.1103/PhysRevLett.127.240501.

2022

[91]

E. Wilson, F. Mueller, and S. Pakin, “Combining Hard and Soft Constraints in Quantum Constraint-Satisfaction Systems,” in SC22: INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, in International Conference for High Performance Computing Networking Storage and Analysis. 2022. doi: 10.1109/SC41404.2022.00018.

[92]

H. Wang et al., “TorchQuantum Case Study for Robust Quantum Circuits (Invited Paper),” in 2022 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN, ICCAD, in ICCAD-IEEE ACM International Conference on Computer-Aided Design. 2022. doi: 10.1145/3508352.3561118.

[93]

J. Viszlai, T. Tomesh, P. Gokhale, E. Anschuetz, and F. T. Chong, “Training Quantum Boltzmann Machines with Coresets,” in 2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022), 2022, pp. 292–298. doi: 10.1109/QCE53715.2022.00049.

[94]

T. Tomesh et al., “SupermarQ: A Scalable Quantum Benchmark Suite,” in 2022 IEEE INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE COMPUTER ARCHITECTURE (HPCA 2022), in International Symposium on High-Performance Computer Architecture-Proceedings. 2022, pp. 587–603. doi: 10.1109/HPCA53966.2022.00050.

[95]

R. Tao et al., “Giallar: Push-Button Verification for the Qiskit Quantum Compiler,” in PROCEEDINGS OF THE 43RD ACM SIGPLAN INTERNATIONAL CONFERENCE ON PROGRAMMING LANGUAGE DESIGN AND IMPLEMENTATION (PLDI `22), R. Jhala and I. Dillig, Eds., 2022, pp. 641–656. doi: 10.1145/3519939.3523431.

[96]

K. N. Smith, G. S. Ravi, J. M. Baker, and F. T. Chong, “Scaling Superconducting Quantum Computers with Chiplet Architectures,” in 2022 55TH ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE (MICRO), in International Symposium on Microarchitecture Proceedings. 2022, pp. 1092–1109. doi: 10.1109/MICRO56248.2022.00078.

[97]

L. M. Seifert, J. Chadwick, A. Litteken, F. T. Chong, and J. M. Baker, “Time-Efficient Qudit Gates through Incremental Pulse Re-seeding,” in 2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022), 2022, pp. 304–313. doi: 10.1109/QCE53715.2022.00051.

[98]

L. Riesebos et al., “Modular software for real-time quantum control systems,” in 2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022), 2022, pp. 545–555. doi: 10.1109/QCE53715.2022.00077.

[99]

L. Riesebos and K. R. Brown, “Functional simulation of real-time quantum control software,” in 2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022), 2022, pp. 535–544. doi: 10.1109/QCE53715.2022.00076.

[100]

G. S. Ravi et al., “VAQEM: A Variational Approach to Quantum Error Mitigation,” in 2022 IEEE INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE COMPUTER ARCHITECTURE (HPCA 2022), in International Symposium on High-Performance Computer Architecture-Proceedings. 2022, pp. 288–303. doi: 10.1109/HPCA53966.2022.00029.

[101]

G. S. Ravi, J. M. Baker, K. N. Smith, N. Earnest, A. Javadi-Abhari, and F. T. Chong, “Quancorde: Boosting fidelity with Quantum Canary Ordered Diverse Ensembles,” in 2022 IEEE INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING, ICRC, 2022, pp. 66–77. doi: 10.1109/ICRC57508.2022.00014.

[102]

J. Liu, P. Li, and H. Zhou, “Not All SWAPs Have the Same Cost: A Case for Optimization-Aware Qubit Routing,” in 2022 IEEE INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE COMPUTER ARCHITECTURE (HPCA 2022), in International Symposium on High-Performance Computer Architecture-Proceedings. 2022, pp. 709–725. doi: 10.1109/HPCA53966.2022.00058.

[103]

A. Litteken, J. M. Baker, and F. T. Chong, “Reducing Runtime Overhead via Use-Based Migration in Neutral Atom Quantum Architectures,” in 2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022), 2022, pp. 566–576. doi: 10.1109/QCE53715.2022.00079.

[104]

A. Litteken, J. M. Baker, and F. T. Chong, “Communication Trade Offs in Intermediate Qudit Circuits,” in 2022 IEEE 52ND INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL 2022), in International Symposium on Multiple-Valued Logic. 2022, pp. 43–49. doi: 10.1109/ISMVL52857.2022.00014.

[105]

S. F. Lin et al., “Let Each Quantum Bit Choose Its Basis Gates,” in 2022 55TH ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE (MICRO), in International Symposium on Microarchitecture Proceedings. 2022, pp. 1042–1058. doi: 10.1109/MICRO56248.2022.00075.

[106]

P. Li, J. Liu, Y. Li, and H. Zhou, “Exploiting Quantum Assertions for Error Mitigation and Quantum Program Debugging,” in 2022 IEEE 40TH INTERNATIONAL CONFERENCE ON COMPUTER DESIGN (ICCD 2022), in Proceedings IEEE International Conference on Computer Design. 2022, pp. 124–131. doi: 10.1109/ICCD56317.2022.00028.

[107]

M. R. Jokar et al., “DigiQ: A Scalable Digital Controller for Quantum Computers Using SFQ Logic,” in 2022 IEEE INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE COMPUTER ARCHITECTURE (HPCA 2022), in International Symposium on High-Performance Computer Architecture-Proceedings. 2022, pp. 400–414. doi: 10.1109/HPCA53966.2022.00037.

[108]

Y. Huang, “Convergence of eigenstate expectation values with system size,” ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, vol. 26, no. 6, pp. 1771–1785, 2022.

[109]

S. Behera, L. Wan, F. Mueller, and S. Wolf Matthew and Klasky, “P-ckpt: Coordinated Prioritized Checkpointing,” in 2022 IEEE 36TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS 2022), in International Parallel and Distributed Processing Symposium IPDPS. 2022, pp. 436–446. doi: 10.1109/IPDPS53621.2022.00049.

[110]

J. Wurtz and P. Love, “Counterdiabaticity and the quantum approximate optimization algorithm,” QUANTUM, vol. 6, Jan. 2022, doi: 10.22331/q-2022-01-27-635.

[111]

Y. Huang, “Finite-size scaling analysis of eigenstate thermalization,” ANNALS OF PHYSICS, vol. 438, Mar. 2022, doi: 10.1016/j.aop.2022.168761.

[112]

P. Murali, D. M. Debroy, K. R. Brown, and M. Martonosi, “Toward Systematic Architectural Design of Near-Term Trapped Ion Quantum Computers,” COMMUNICATIONS OF THE ACM, vol. 65, no. 3, pp. 101–109, Mar. 2022, doi: 10.1145/3511064.

[113]

M. Kreshchuk, W. M. Kirby, G. Goldstein, H. Beauchemin, and P. J. Love, “Quantum simulation of quantum field theory in the light-front formulation,” PHYSICAL REVIEW A, vol. 105, no. 3, Mar. 2022, doi: 10.1103/PhysRevA.105.032418.

[114]

J. C. Napp, R. L. la Placa, A. M. Dalzell, F. G. S. L. Brandao, and A. W. Harrow, “Efficient Classical Simulation of Random Shallow 2D Quantum Circuits,” PHYSICAL REVIEW X, vol. 12, no. 2, Apr. 2022, doi: 10.1103/PhysRevX.12.021021.

[115]

Y. Huang, “Entanglement Dynamics From Random Product States: Deviation From Maximal Entanglement,” IEEE TRANSACTIONS ON INFORMATION THEORY, vol. 68, no. 5, pp. 3200–3207, May 2022, doi: 10.1109/TIT.2022.3140469.

[116]

J. B. DeBrota and P. J. Love, “Quantum and Classical Bayesian Agents,” QUANTUM, vol. 6, pp. 1–51, May 2022.

[117]

C. Noel et al., “Measurement-induced quantum phases realized in a trapped-ion quantum computer,” NATURE PHYSICS, vol. 18, no. 7, p. 760+, Jul. 2022, doi: 10.1038/s41567-022-01619-7.

[118]

A. Hashim et al., “Optimized SWAP networks with equivalent circuit averaging for QAOA,” PHYSICAL REVIEW RESEARCH, vol. 4, no. 3, Jul. 2022, doi: 10.1103/PhysRevResearch.4.033028.

[119]

A. K. Daniel et al., “Quantum computational advantage attested by nonlocal games with the cyclic cluster state,” PHYSICAL REVIEW RESEARCH, vol. 4, no. 3, Jul. 2022, doi: 10.1103/PhysRevResearch.4.033068.

[120]

K. N. Smith et al., “Programming physical quantum systems with pulse-level control,” FRONTIERS IN PHYSICS, vol. 10, Aug. 2022, doi: 10.3389/fphy.2022.900099.

[121]

E. Koekcue, T. Steckmann, Y. Wang, E. F. Freericks J. K. and Dumitrescu, and A. F. Kemper, “Fixed Depth Hamiltonian Simulation via Cartan Decomposition,” PHYSICAL REVIEW LETTERS, vol. 129, no. 7, Aug. 2022, doi: 10.1103/PhysRevLett.129.070501.

[122]

G. de Micheli, J.-H. R. Jiang, R. Rand, K. Smith, and M. Soeken, “Advances in Quantum Computation and Quantum Technologies: A Design Automation Perspective,” IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, vol. 12, no. 3, pp. 584–601, Sep. 2022, doi: 10.1109/JETCAS.2022.3205174.

[123]

A. Anshu, A. W. Harrow, and M. Soleimanifar, “Entanglement spread area law in gapped ground states,” NATURE PHYSICS, vol. 18, no. 11, p. 1362+, Nov. 2022, doi: 10.1038/s41567-022-01740-7.

[124]

D. Zhu et al., “Cross-platform comparison of arbitrary quantum states,” NATURE COMMUNICATIONS, vol. 13, no. 1, Nov. 2022, doi: 10.1038/s41467-022-34279-5.

[125]

T. Zhou and A. W. Harrow, “Maximal entanglement velocity implies dual unitarity,” PHYSICAL REVIEW B, vol. 106, no. 20, Nov. 2022, doi: 10.1103/PhysRevB.106.L201104.

[126]

A. M. Childs, J. Leng, T. Li, J.-P. Liu, and C. Zhang, “Quantum Simulation of Real-Space Dynamics,” QUANTUM, vol. 6, Nov. 2022.

[127]

T.-X. Zheng et al., “Preparation of metrological states in dipolar-interacting spin systems,” NPJ QUANTUM INFORMATION, vol. 8, no. 1, Dec. 2022, doi: 10.1038/s41534-022-00667-4.

[128]

S. Stein et al., “HetArch: Heterogeneous Microarchitectures for Superconducting Quantum Systems,” in 56TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE, MICRO 2023, 2023, pp. 539–554. doi: 10.1145/3613424.3614300.

[129]

Q. Zhao, Y. Zhou, A. F. Shaw, T. Li, and A. M. Childs, “Hamiltonian Simulation with Random Inputs,” PHYSICAL REVIEW LETTERS, vol. 129, no. 27, Dec. 2022, doi: 10.1103/PhysRevLett.129.270502.

2023

[130]

K. N. Smith, J. Viszlai, J. M. Seifert Lennart Maximilian and Baker, J. Szefer, and F. T. Chong, “Fast Fingerprinting of Cloud-based NISQ Quantum Computers,” in 2023 IEEE INTERNATIONAL SYMPOSIUM ON HARDWARE ORIENTED SECURITY AND TRUST, HOST, R. Cammarota, V. Mooney, F. Farahmandi, S. Wei, and M. M. Kermani, Eds., in IEEE International Workshop on Hardware Oriented Security and Trust. 2023, pp. 271–282. doi: 10.1109/HOST55118.2023.10133778.

[131]

G. S. Ravi et al., “Better ThanWorst-Case Decoding for Quantum Error Correction,” in PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS, VOL 2, ASPLOS 2023, T. M. Aamodt, N. E. Jerger, and M. Swift, Eds., 2023, pp. 88–102. doi: 10.1145/3575693.3575733.

[132]

G. S. Ravi et al., “CAFQA: A Classical Simulation Bootstrap for Variational Quantum Algorithms,” in PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS, VOL 1, ASPLOS 2023, T. M. Aamodt, N. E. Jerger, and M. Swift, Eds., 2023, pp. 15–29. doi: 10.1145/3567955.3567958.

[133]

J. Liu et al., “QContext: Context-Aware Decomposition for Quantum Gates,” in 2023 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS, in IEEE International Symposium on Circuits and Systems. 2023. doi: 10.1109/ISCAS46773.2023.10181370.

[134]

A. Litteken, L. M. Seifert, J. Chadwick, N. Nottingham, F. T. Chong, and J. M. Baker, “Qompress: Efficient Compilation for Ququarts Exploiting Partial and Mixed Radix Operations for Communication Reduction,” in PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS, VOL 2, ASPLOS 2023, T. M. Aamodt, N. E. Jerger, and M. Swift, Eds., 2023, pp. 646–659. doi: 10.1145/3575693.3575726.

[135]

A. Litteken et al., “Dancing the Quantum Waltz: Compiling Three-Qubit Gates on Four Level Architectures,” in PROCEEDINGS OF THE 2023 THE 50TH ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE, ISCA 2023, in Conference Proceedings Annual International Symposium on Computer Architecture. 2023, pp. 992–1005. doi: 10.1145/3579371.3589106.

[136]

P. Li, J. Liu, H. P. Patil, P. Hovland, and H. Zhou, “Enhancing Virtual Distillation with Circuit Cutting for Quantum Error Mitigation,” in 2023 IEEE 41ST INTERNATIONAL CONFERENCE ON COMPUTER DESIGN, ICCD, in Proceedings IEEE International Conference on Computer Design. 2023, pp. 94–101. doi: 10.1109/ICCD58817.2023.00024.

[137]

S. Dangwal, G. S. Ravi, P. Das, K. N. Smith, J. M. Baker, and F. T. Chong, “VarSaw: Application-tailored Measurement Error Mitigation for Variational Quantum Algorithms,” in PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS, ASPLOS 2023, VOL 4, T. M. Aamodt, N. E. Jerger, and M. Swift, Eds., 2023, pp. 362–377. doi: 10.1145/3623278.3624764.

[138]

F. Chong, “Closing the Gap between Quantum Algorithms and Machines with Hardware-Software Co-Design,” in PROCEEDINGS OF THE GREAT LAKES SYMPOSIUM ON VLSI 2023, GLSVLSI 2023, 2023, p. 83. doi: 10.1145/3583781.3592462.

[139]

M. Kang et al., “Designing Filter Functions of Frequency-Modulated Pulses for High-Fidelity Two-Qubit Gates in Ion Chains,” PHYSICAL REVIEW APPLIED, vol. 19, no. 1, Jan. 2023, doi: 10.1103/PhysRevApplied.19.014014.

[140]

T. Weaving, A. Ralli, W. M. Kirby, P. J. Tranter Andrew and Love, and P. Coveney V, “A Stabilizer Framework for the Contextual Subspace Variational Quantum Eigensolver and the Noncontextual Projection Ansatz,” JOURNAL OF CHEMICAL THEORY AND COMPUTATION, Sep. 2023, doi: 10.1021/acs.jctc.2c00910.

[141]

A. Ralli, T. Weaving, A. Tranter, P. J. Kirby William M. and Love, and P. Coveney V, “Unitary partitioning and the contextual subspace variational quantum eigensolver,” PHYSICAL REVIEW RESEARCH, vol. 5, no. 1, Feb. 2023, doi: 10.1103/PhysRevResearch.5.013095.

[142]

K. N. Smith et al., “TimeStitch: Exploiting Slack to Mitigate Decoherence in Quantum Circuits,” ACM TRANSACTIONS ON QUANTUM COMPUTING, vol. 4, no. 1, Mar. 2023, doi: 10.1145/3548778.

[143]

Z. Jia et al., “Angle-robust two-qubit gates in a linear ion crystal,” PHYSICAL REVIEW A, vol. 107, no. 3, Mar. 2023, doi: 10.1103/PhysRevA.107.032617.

[144]

W. Morong, K. S. Collins, A. De, E. Stavropoulos, T. You, and C. Monroe, “Engineering Dynamically Decoupled Quantum Simulations with Trapped Ions,” PRX QUANTUM, vol. 4, no. 1, Mar. 2023, doi: 10.1103/PRXQuantum.4.010334.

[145]

Y. Huang, “Adding boundary terms to Anderson localized Hamiltonians leads to unbounded growth of entanglement,” EPL, vol. 142, no. 1, Apr. 2023, doi: 10.1209/0295-5075/acc19d.

[146]

R. Shaffer et al., “Sample-efficient verification of continuously-parameterized quantum gates for small quantum processors,” QUANTUM, vol. 7, May 2023.

[147]

A. W. W. Harrow and S. Mehraban, “Approximate Unitary t-Designs by Short Random Quantum Circuits Using Nearest-Neighbor and Long-Range Gates,” COMMUNICATIONS IN MATHEMATICAL PHYSICS, vol. 401, no. 2, pp. 1531–1626, Jul. 2023, doi: 10.1007/s00220-023-04675-z.

[148]

O. Katz, L. Feng, A. Risinger, C. Monroe, and M. Cetina, “Demonstration of three- and four-body interactions between trapped-ion spins,” NATURE PHYSICS, Sep. 2023, doi: 10.1038/s41567-023-02102-7.

[149]

O. Katz and C. Monroe, “Programmable Quantum Simulations of Bosonic Systems with Trapped Ions,” PHYSICAL REVIEW LETTERS, vol. 131, no. 3, Jul. 2023, doi: 10.1103/PhysRevLett.131.033604.

[150]

O. Katz, M. Cetina, and C. Monroe, “Programmable N-Body Interactions with Trapped Ions,” PRX QUANTUM, vol. 4, no. 3, Jul. 2023, doi: 10.1103/PRXQuantum.4.030311.

[151]

D. Zhu et al., “Interactive cryptographic proofs of quantumness using mid-circuit measurements,” NATURE PHYSICS, vol. 19, no. 11, p. 1725+, Nov. 2023, doi: 10.1038/s41567-023-02162-9.

[152]

J. Whitlow, Z. Jia, Y. Wang, C. Fang, J. Kim, and K. R. Brown, “Quantum simulation of conical intersections using trapped ions,” NATURE CHEMISTRY, Sep. 2023, doi: 10.1038/s41557-023-01303-0.

[153]

D. An, J.-P. Liu, and L. Lin, “Linear Combination of Hamiltonian Simulation for Nonunitary Dynamics with Optimal State Preparation Cost,” PHYSICAL REVIEW LETTERS, vol. 131, no. 15, Oct. 2023, doi: 10.1103/PhysRevLett.131.150603.

[154]

L. Feng et al., “Continuous symmetry breaking in a trapped-ion spin chain,” NATURE, vol. 623, no. 7988, p. 713+, Nov. 2023, doi: 10.1038/s41586-023-06656-7.

[155]

K. Seetharam et al., “Digital quantum simulation of NMR experiments,” SCIENCE ADVANCES, vol. 9, no. 46, Nov. 2023, doi: 10.1126/sciadv.adh2594.

[156]

E. R. Anschuetz, A. Bauer, B. T. Kiani, and S. Lloyd, “Efficient classical algorithms for simulating symmetric quantum systems,” QUANTUM, vol. 7, Nov. 2023, doi: 10.22331/q-2023-11-28-1189.

[157]

A. W. Harrow, “Approximate orthogonality of permutation operators, with application to quantum information,” LETTERS IN MATHEMATICAL PHYSICS, vol. 114, no. 1, Dec. 2023, doi: 10.1007/s11005-023-01744-1.

[158]

S. Pilatowsky-Cameo, C. B. Dag, W. W. Ho, and S. Choi, “Complete Hilbert-Space Ergodicity in Quantum Dynamics of Generalized Fibonacci Drives,” PHYSICAL REVIEW LETTERS, vol. 131, no. 25, Dec. 2023, doi: 10.1103/PhysRevLett.131.250401.

2024

[159]

L. Lewis et al., “Experimental implementation of an efficient test of quantumness,” PHYSICAL REVIEW A, vol. 109, no. 1, Jan. 2024, doi: 10.1103/PhysRevA.109.012610.

[160]

Y. Huang and A. W. Harrow, “IMPROVED CONCENTRATION OF LAGUERRE AND JACOBI ENSEMBLES,” SIAM JOURNAL ON MATHEMATICAL ANALYSIS, vol. 56, no. 1, pp. 554–567, 2024, doi: 10.1137/23M1545343.

[161]

R. Belyansky, S. Whitsitt, N. Mueller, E. R. Fahimniya Ali and Bennewitz, Z. Davoudi, and A. v. Gorshkov, “High-Energy Collision of Quarks and Mesons in the Schwinger Model: From Tensor Networks to Circuit QED,” PHYSICAL REVIEW LETTERS, vol. 132, no. 9, Feb. 2024, doi: 10.1103/PhysRevLett.132.091903.

[162]

J. Liu et al., “Towards provably efficient quantum algorithms for large-scale machine-learning models,” NATURE COMMUNICATIONS, vol. 15, no. 1, Jan. 2024, doi: 10.1038/s41467-023-43957-x.

[163]

J. Bringewatt, A. Ehrenberg, T. Goel, and A. V. Gorshkov, “Optimal function estimation with photonic quantum sensor networks,” PHYSICAL REVIEW RESEARCH, vol. 6, no. 1, Mar. 2024, doi: 10.1103/PhysRevResearch.6.013246.

[164]

A. L. Carter et al., “Ion trap with in-vacuum high numerical aperture imaging for a dual-species modular quantum computer,” REVIEW OF SCIENTIFIC INSTRUMENTS, vol. 95, no. 3, Mar. 2024, doi: 10.1063/5.0180732.

[165]

Y. Wang, Y. Alexeev, L. Jiang, and J. Chong Frederic T. and Liu, “Fundamental causal bounds of quantum random access memories,” NPJ QUANTUM INFORMATION, vol. 10, no. 1, Jul. 2024, doi: 10.1038/s41534-024-00848-3.

[166]

T. G. Thurtell and A. Miyake, “Optimizing one-axis twists for variational Bayesian quantum metrology,” PHYSICAL REVIEW RESEARCH, vol. 6, no. 2, May 2024, doi: 10.1103/PhysRevResearch.6.023179.

[167]

M. Davydova, N. Tantivasadakarn, S. Balasubramanian, and D. Aasen, “Quantum computation from dynamic automorphism codes,” QUANTUM, vol. 8, pp. 1–101, Aug. 2024.