Publications

2018

1. Debroy, D. M., Li, M., Newman, M. & Brown, K. R. Stabilizer slicing: Coherent error cancellations in low-density parity-check stabilizer codes. Phys. Rev. Lett. 121, 250502, DOI: 10.1103/PhysRevLett.121.250502 (2018).
2. Wu, X.-C. et al. Amplitude-aware lossy compression for quantum circuit simulation (2018). Accepted talk DRBSD-4, 1811.05140.
3. Harrow, A. & Mehraban, S. Approximate unitary t-designs by short random quantum circuits using nearest-neighbor and long-range gates (2018). Accepted talk QIP 2019, 1809.06957.

2019

4. Harrow, A. & Napp, J. Low-depth gradient measurements can improve convergence in variational hybrid quantum-classical algorithms (2019). 1901.05374.
5. Tan, W. L. et al. Observation of domain wall confinement and dynamics in a quantum simulator (2019). 1912.11117.
6. Kirby, W. M. & Love, P. J. Contextuality test of the nonclassicality of variational quantum eigensolvers. Phys. Rev. Lett. 123, 200501, DOI: 10.1103/PhysRevLett.123.200501 (2019).
7. Liu, F. et al. Confined quasiparticle dynamics in long-range interacting quantum spin chains. Phys. Rev. Lett. 122, 150601, DOI: 10.1103/PhysRevLett.122.150601 (2019).
8. Titum, P., Iosue, J. T., Garrison, J. R., Gorshkov, A. V. & Gong, Z.-X. Probing ground-state phase transitions through quench dynamics. Phys. Rev. Lett. 123, 115701, DOI: 10.1103/PhysRevLett.123.115701 (2019).
9. Landsman, K. A. et al. Two-qubit entangling gates within arbitrarily long chains of trapped ions. Phys. Rev. A 100, 022332, DOI: 10.1103/PhysRevA.100.022332 (2019).
10. Shi, Y. et al. Optimized compilation of aggregated instructions for realistic quantum computers. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’19, 1031–1044, DOI: 10.1145/3297858.3304018 (Association for Computing Machinery, New York, NY, USA, 2019).
11. Murali, P., Baker, J. M., Javadi-Abhari, A., Chong, F. T. & Martonosi, M. Noise-adaptive compiler mappings for noisy intermediate-scale quantum computers. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’19, 1015–1029, DOI: 10.1145/3297858.3304075 (Association for Computing Machinery, New York, NY, USA, 2019).
12. Gokhale, P. et al. Asymptotic improvements to quantum circuits via qutrits. In Proceedings of the 46th International Symposium on Computer Architecture, ISCA ’19, 554–566, DOI: 10.1145/3307650.3322253 (Association for Computing Machinery, New York, NY, USA, 2019).
13. Wu, X.-C. et al. Full-state quantum circuit simulation by using data compression. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’19, DOI: 10.1145/3295500.3356155 (Association for Computing Machinery, New York, NY, USA, 2019).
14. Gokhale, P. et al. Partial compilation of variational algorithms for noisy intermediate-scale quantum machines. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO ’52, 266–278, DOI:10.1145/3352460.3358313 (Association for Computing Machinery, New York, NY, USA, 2019).Gokhale, P.et al.Partial compilation of variational algorithms for noisy intermediate-scale quantum machines. InProceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO ’52, 266–278, DOI:10.1145/3352460.3358313 (Association for Computing Machinery, New York, NY, USA, 2019).15.Zhu, D.et al.Training of quantum circuits on a hybrid quantum computer.Sci. Adv.5, eaaw99
15. Zhu, D. et al. Training of quantum circuits on a hybrid quantum computer. Sci. Adv. 5, eaaw9918, DOI: 10.1126/sciadv.aaw9918 (2019).
16. Brown, N. C. & Brown, K. R. Leakage mitigation for quantum error correction using a mixed qubit scheme. Phys. Rev. A 100, 032325, DOI: 10.1103/PhysRevA.100.032325 (2019).
17. Brown, N. C., Newman, M. & Brown, K. R. Handling leakage with subsystem codes. New J. Phys. 21, 073055, DOI: 10.1088/1367-2630/ab3372 (2019).
18. Figgatt, C. et al. Parallel entangling operations on a universal ion-trap quantum computer. Nature 572, 368–372, DOI: 10.1038/s41586-019-1427-5 (2019).

2020

19. Harrow, A. W. & Wei, A. Y. Adaptive quantum simulated annealing for bayesian inference and estimating partition functions. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms (SODA), 193–212, DOI: 10.1137/1.9781611975994.12.
20. Murali, P., Debroy, D. M., Brown, K. R. & Martonosi, M. Architecting noisy intermediate-scale trapped ion quantum computers. In Proceedings of the ACM/IEEE 47th Annual International Symposium on Computer Architecture, 529–542, DOI: 10.1109/ISCA45697.2020.00051 (IEEE Press, 2020).
21. Shi, Y. et al. Resource-efficient quantum computing by breaking abstractions. Proc. IEEE 108, 1353–1370, DOI: 10.1109/JPROC.2020.2994765 (2020).
22. Debroy, D. M., Li, M., Huang, S. & Brown, K. R. Logical performance of 9 qubit compass codes in ion traps with crosstalk errors. Quantum Sci. Technol. 5, 034002, DOI: 10.1088/2058-9565/ab7e80 (2020).
23. Debroy, D. M. & Brown, K. R. Extended flag gadgets for low-overhead circuit verification. Phys. Rev. A 102, 052409, DOI: 10.1103/PhysRevA.102.052409 (2020).
24. Peng, T., Harrow, A. W., Ozols, M. & Wu, X. Simulating large quantum circuits on a small quantum computer. Phys. Rev. Lett. 125, 150504, DOI: 10.1103/PhysRevLett.125.150504 (2020).
25. Zhao, A. et al. Measurement reduction in variational quantum algorithms. Phys. Rev. A 101, 062322, DOI: 10.1103/PhysRevA.101.062322 (2020).
26. Kirby, W. M. & Love, P. J. Classical simulation of noncontextual Pauli Hamiltonians. Phys. Rev. A 102, 032418, DOI: 10.1103/PhysRevA.102.032418 (2020).
27. Yang, Z.-C., Liu, F., Gorshkov, A. V. & Iadecola, T. Hilbert-space fragmentation from strict confinement. Phys. Rev. Lett. 124, 207602, DOI: 10.1103/PhysRevLett.124.207602 (2020).
28. Verdel, R., Liu, F., Whitsitt, S., Gorshkov, A. V. & Heyl, M. Real-time dynamics of string breaking in quantum spin chains. Phys. Rev. B 102, 014308, DOI: 10.1103/PhysRevB.102.014308 (2020).
29. Wang, Y. et al. High-fidelity two-qubit gates using a microelectromechanical-system-based beam steering system for
individual qubit addressing. Phys. Rev. Lett. 125, 150505, DOI: 10.1103/PhysRevLett.125.150505 (2020).
30. Davoudi, Z. et al. Towards analog quantum simulations of lattice gauge theories with trapped ions. Phys. Rev. Res. 2, 023015, DOI: 10.1103/PhysRevResearch.2.023015 (2020).
31. Wu, X.-C. et al. TILT: Achieving higher fidelity on a trapped-ion linear-tape quantum computing architecture (2020). 2010.15876.
32. Egan, L. et al. Fault-tolerant operation of a quantum error-correction code (2020). 2009.11482.
33. Napp, J., Placa, R. L. L., Dalzell, A. M., Brandao, F. G. S. L . & Harrow, A. W. Efficient classical simulation of random shallow 2d quantum circuits (2020). 2001.00021.
34. Daniel, A. K. & Miyake, A. Quantum computational advantage with string order parameters of 1d symmetry-protected topological order (2020). 2007.16160.
35. Tomesh, T., Gokhale, P., Anschuetz, E. R. & Chong, F. T. Coreset clustering on small quantum computers (2020). 2004.14970.
36. Harrow, A. W. Small quantum computers and large classical data sets (2020). 2004.00026.
37. Kirby, W. M., Tranter, A. & Love, P. J. Contextual subspace variational quantum eigensolver (2020). 2011.10027.
38. Kreshchuk, M., Kirby, W. M., Goldstein, G., Beauchemin, H. & Love, P. J. Quantum simulation of quantum field theory in the light-front formulation (2020). 2002.04016.
39. Kreshchuk, M. et al. Simulating hadronic physics on NISQ devices using basis light-front quantization (2020). 2011.13443.
40. Kreshchuk, M. et al. Light-front field theory on current quantum computers (2020). 2009.07885.
41. Brown, K. R., Chiaverini, J., Sage, J. & Häffner, H. Materials challenges for trapped-ion quantum computers (2020). 2009.00568.
42. Cetina, M. et al. Quantum gates on individually-addressed atomic qubits subject to noisy transverse motion (2020). 2007.06768.
43. J. Kim, T. Chen, J. Whitlow, S. Phiri, B. Bondurant, M. Kuzyk, S. Crain, K. Brown, and J. Kim, Hardware design of a trapped-ion quantum computer for Software-Tailored Architecture for Quantum co-design (STAQ) project, in OSA Quantum 2.0 Conference, M. Raymer, C. Monroe, and R. Holzwarth, eds., OSA Technical Digest (Optical Society of America, 2020), paper QM6A.2.DOI: 10.1364/QUANTUM.2020.QM6A.2 (2020).